Improving Progressive Denoiser

T7: Jaehyeon Lee, Chanwoo Cho

Progressive Denoising

- 1. Loss of detail
- 2. Bad performance in high spp

Rendered Image

Denoised Image

= Good Image!

Progressive Denoising

1. Generate denoised image from rendered image.

2. Calculate error using **SURE** from denoised image. $SURE(F,x) = \frac{1}{d} \left(\|F(x) - x\|^2 + 2tr(J_F(x) \cdot \Sigma) - tr(\Sigma) \right)$

3. Receive α as output from NN.

4. Rescale α with t-statistics.

5. Generate resulting mixed image.

Limitation

Limitation of method at very low spp. 2 spp in this example.

Bad prediction of SURE in low spp.

Improvement - Use better denoiser at low SPP

Use NPPD as denoiser \rightarrow Failed

Improvement - Use better error estimation

Motivation

Figure 5: Block averaged SURE and false color visualization

Error estimation - SURE

Less Loss?

Error estimation - SURE

Small-sized specular regions(may be blurred out)

Scattered errors

Implementation

Implementation

Use Kernel-Predicting Network for error estimation

From "Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings" (Bako et al. ACM Transactions on Graphics (TOG), Volume 36, Issue 4)

Result - Error Estimation Result

Result - Error Estimation Result

Result - Final Denoised Result - Good cases

'bistro-cafe' scene(64spp)

Ours

Result - Final Denoised Result - Bad cases

'sanmiguel' scene, 256spp

PD

Ours

Denoised

Ours

PD

Result - Final Denoised Result

Average MSE(under 256spp): PD=0.066, Ours=0.070

Summary

- Better result in some 'specular-dominant' scenes (glass-of-water)
- Worse result in 'diffuse-dominant' scenes (sanmiguel)

To get meaningful improvement with this structure, modifying for general cases is inevitable

Further development?

- Estimates RelSE, rather than Squared Error

Per-Pixel Squared Error

Per-Pixel Relative Squared Error

Further development?

- More inputs on error estimator

Error estimation for landscape-2spp, dark as my future

A denoiser using multiple inputs for denoising

Experiment - Details

- Environment
 - R7 7700X(Inference), RTX 4060Ti(8GB, Training)

- Model
 - Error estimator:
 - 3 Channel input, 5*5 kernel, 100 features, output kernel 11*11, 8 hidden layers
 - Converged less than 200 epoch(4 hours)
 - AdaGrad Optimizer with lr=0.000002
 - Progressive Denoiser:
 - Converged after 14 hours (2500 epoch(pretrained for SURE) + 2500 epoch)

Roles

- Jaehyeon Lee: Implementation, Presentation
- Chanwoo Cho: Theoretical Backgrounds, Presentation

Thank you